skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schwartz DA, Lekmkuhl BK"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here we focus on dormancy in the Firmicutes, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship and reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. Here, we characterized the distribution and diversity of sigma factors in nearly 3,500 phage genomes. Homologs of sporulation-specific sigma factors were identified in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, the sporulation-like sigma factors were non-essential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, sigma factors from phages activated the bacterial sporulation gene network and reduced spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. 
    more » « less